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Abstract

In z-coordinates ocean codes, mesoscale fluxes entering the T,S equations are represented by three terms: an eddy-
induced velocity, a diapycnal flux R and a diffusion (Redi-like) term. Several eddy resolving codes have shown that the
diapycnal flux R is quite large. However, all ocean codes have been run with zero diapycnal flux, R = 0.

We model R and show that its contribution is of the same order of magnitude as the other two mesoscale terms usually
accounted for.

We also assess the validity of the two arguments most frequently cited to neglect R: (1) in an adiabatic regime, fluxes
across isopycnal surfaces must vanish and so must the diapycnal flux R (we show that since R is not the total buoyancy flux
but only part of it, there is no justification in demanding that R should satisfy the same conditions as the total flux) and (2)
the results of a z-coordinate ocean code without R can be re-interpreted as those derived from the TRM (temporal residual
mean) in which there is no R almost by definition since TRM is quite close to an isopycnal model.
Published by Elsevier Ltd.
1. The problem

In z-coordinates, the general equation for an arbitrary mean tracer �s is given by
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�st þU � r�s ¼ �r � ðU0s0Þ þ Q ð1Þ

Here, U is the 3D mean velocity field, U0s0 is the mesoscale-induced flux, U0 = (u0,w0) is the mesoscale velocity
field, $ = ($H,oz), an overbar indicates a fixed depth averaging and Q stands for irreversible (diabatic) terms.

Coarse-resolution OGCMs are unable to resolve the mesoscale field and must model the 3D flux U0s0. In the
adiabatic region of the ocean, mesoscales can be modeled with an advective velocity (called eddy-induced
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velocity, Gent and McWilliams, 1990; Canuto and Dubovikov, 2005, 2006), a diffusive term (Redi, 1982) and
the z-derivative of a diapycnal flux R. Thus, Eq. (1) becomes:
�st þ ðUþUþÞ � r�sþ oR
oz
¼ Dð�sÞ þ Q ð2Þ
Here, U+ = (u+,w+) is the 3D eddy-induced velocity, R is the mesoscale-induced diapycnal flux and Dð�sÞ is the
diffusion term. In the case of buoyancy s ¼ b ¼ �gq�1

0 ðq� q0Þ, the corresponding R was found to be ‘‘too
large to be ignored” (Gille and Davis, 1999). In spite of that, all present day z-coordinates OGCMs employ
(2) with R = 0:
�st þ ðUþUþÞ � r�s ¼ Dð�sÞ þ Q ð3Þ

The two most frequently cited reasons to neglect R are one of physical nature and one of more mathematical
nature. The first one is usually formulated as follows: in an adiabatic regime, the flux of any scalar across
isopycnals is zero and thus a diapycnal flux such as R should not be present. In Appendix A we show that
in an adiabatic regime the total flux of any scalar across isopycnals must indeed be zero but we also show that
R is not the total buoyancy flux but only part of it. Therefore, there is no physical justification to require
that under adiabatic conditions R be zero. The second argument is that the results of a z-coordinate ocean
code using (3) without R can be re-interpreted as those derived from the TRM (temporal residual mean) in
which there is no R (almost by definition since TRM is quite close to an isopycnal model in which there is
no R). In Appendix B we present several arguments one of which is that the disappearance of R in the
TRM occurs at the expense of redefining a new eddy induced velocity u++ which is physically rather different
from the standard u+ defined above which depends on the mesoscale kinetic energy K, u+(K), Eq. (6c). In fact,
u++ depends on both the eddy kinetic energy K and the eddy potential energy W, u+(K, W), see Appendix B,
Eq. (6). Thus, to model u++ one needs to model the two mesoscale variables K and W which have quite dif-
ferent z-profiles (Böning and Budich, 1992), a modeling requirement that is no more advantageous than hav-
ing to model the two variables u+(K) and R since we recall that the latter represents the rate of production of
eddy potential energy W. Stated differently, since in a z-coordinate system one must model two scalars, K and
R, and since scalars are unaffected by coordinates transformation, the same two physical parameters must also
be present in the TRM formalism in which in fact they appear in the definition of u++.

2. Model independent results

In this section, we present a series of model independent results preparatory to the modeling procedure
discussed in Section 3. To model U0s0 in (1), we use the known fact that the physics of mesoscales is more trans-
parent in isopycnal than in z-coordinates. If we adopt a double prime to denote fluctuating quantities in
isopycnal coordinates, it was shown in Canuto and Dubovikov (2006) that the following relations hold true
between the fluctuating variables in the two systems of coordinates (see also McDougall and McIntosh (2001),
Eq. (39)):
s00 ¼ s0 � N�2szb
0; U0 ¼ U00 ð4aÞ

U0s0 ¼ Fs þ �szN�2Fb ð4bÞ
where
Fs ¼ U0s00; Fb ¼ U0b0 ð5aÞ

are the tracer and buoyancy fluxes, respectively. If we insert (5a) into (1), the result is different from the
‘‘canonical form” (2) and the identification of the different terms is consequently difficult. For that reason,
(5a) and (1) must be transformed to acquire a form similar to (2). This process is purely mathematical in
nature and has no physical content. For that reason, we present it in Appendix C, Eqs. (7), from which we
reproduce the final result:
�st þ ðUþUþÞ � r�sþ oR
oz
¼ Dð�sÞ ð5bÞ
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where the R flux is a combination of tracer and buoyancy fluxes:
N 2R ¼ Fs � r�bþ �szFb � r�bþ u0b0 � rq�s � N 2ðR1 þ R2 þ R3Þ ð5cÞ

where $q = $H + Loz and where for future convenience we have called the three terms in (5c) R1,2,3. At the
same time, the diffusion term turns out to be
N�2Dð�sÞ ¼ �rq N�2 u0s0 � sz

N 2
u0b0

� �� �
ð5dÞ
Finally, the eddy–induced velocity U+ = (u+,w+) is defined by the model independent relations:
uþ ¼ �ozðN�2u0b0Þ; rH � uþ þ ozwþ ¼ 0 ð5eÞ

As a consistency check, consider s to be the buoyancy field, s = b. We obtain:
�sz ¼ N 2; s00 ¼ 0; Fs ¼ 0; Dð�bÞ ¼ 0; R1;3 ¼ 0; R2 � Rb ¼ Fb � r�b ð5fÞ

in which case Eq. (5b) reduces to the known buoyancy equation (Treguier et al., 1997, Eqs. (6) and (7)). We
stress that (5b)–(5e) are model independent. Next, we model the mesoscale functions R, Dð�sÞ.

3. Modeling R and D(�s)

3.1. The diffusion D

The simplest term is the diffusion term (5d) which turns out to be:
N�2Dð�sÞ ¼ rqðN�2jMrq�sÞ ð6aÞ

which, for a constant mesoscale diffusivity jM, coincides with Redi’s (1982) formula. However, as shown in
Canuto and Dubovikov (2006), Eq. (4b), the diffusivity jM is not constant.

3.2. The R3 term in (5c)

Next, we study the R3 term in (5c). Using the first of (5e), we have:
FH ¼ u0b0 ¼ �N 2

Z z

�H

uþðnÞdn ð6bÞ
In Canuto and Dubovikov (2006), Eqs. (4), it was shown that the eddy-induced velocity in (6b) has the
following form ðL ¼ �N�2rH

�bÞ:
uþ ¼ �kMw; jM ¼ rdK1=2ðzÞ
w ¼ ozLþ wðnewÞ; wðnewÞ ¼ �Ak� ðud � �uÞ � f �1b

ð6cÞ
where ud is the eddy drift velocity discussed below and defined as
ud ¼ h�ui þ ð1þ rtÞ�1
cR � A�1k� hozLi ð6dÞ
Here, A ¼ ð1þ r�1
t Þðfr2

dÞ
�1, cR ¼ rtr2

dk� b is the velocity of the barotropic Rossby waves, b = $Hf, rt is the
turbulent Prandtl number, rd is the Rossby deformation radius, and for an arbitrary function f(z), the average
hfi is defined as
hf i �
Z 0

�H

f ðzÞK1=2ðzÞdz
Z 0

�H

K1=2ðzÞdz
� ��1

ð6eÞ
where K(z) is the mesoscale kinetic energy given by Eq. (5) in Canuto and Dubovikov (2006). A few comments
are necessary. First, the first term in w, Eq. (6c), is the GM model and by itself it does not satisfy the baro-
clinicity condition:
Z 0

�H

uþðzÞdz ¼ 0 ð6fÞ
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a well-known shortcoming that has been remedied by the use of ad hoc tapering functions which significantly
affect the results (Danabasoglu and McWilliams, 1995; Large et al., 1997; Gerdes et al., 1999; Killworth, 2001,
2005). Second, it is simple to show that w(new) makes (6f) satisfied, that is, we now have (Canuto and
Dubovikov, 2006, Eq. (4i)):
Z 0

�H

uþðzÞdz ¼
Z 0

�H

jM½ozLþ wðnewÞ�dz ¼ 0 ð6gÞ
and thus tapering schemes are no longer necessary.
Third, using an eddy resolving ocean code, Bryan et al. (1999) concluded that the GM model was not suf-

ficient to represent the data and that ‘‘additional terms, not related to the gradient of thickness”, were needed.
As one can see, w(new) does not involve the thickness gradient and it may be a candidate of what Bryan et al.
described. The term w(new) is in fact entirely of dynamical nature since it depends on the difference between
the mean velocity �u and ud where the latter represents the mesoscales ‘‘drift velocity” that characterizes the
eddy motion as a whole since ‘‘eddies move through the background water at speeds and direction inconsistent
with background flow” (Richardson, 1993). Since the drift velocity is the same through the entire vertical
eddy’s structure and is thus z-independent, for the GM model to be valid it is necessary that:
�uðzÞ ¼ ud ð6hÞ

and that b be zero. While the latter may be an acceptable approximation, (6h) is impossible to satisfy every-
where since ud is a z-independent, barotropic variable while the mean velocity �uðzÞ is z-dependent. Though (6h)
may be satisfied at some point, it cannot be valid throughout the water column. Since the difference ud � �u
most likely changes sign along the water column, it may be interpreted as an ‘‘erosion” by the mean flow
on the otherwise compact, axisymmetric structure represented by an eddy. Energetic considerations that
justify more fully this statement were presented in Canuto and Dubovikov (2005) (Eqs. (33a)–(33d)).

In conclusion, combining Eqs. (6b)–(6e) and the model for K given in Canuto and Dubovikov (2006) (Eqs.
(5)), one obtains the final form of the first term u0b0 in (5c).

3.3. The R2 term in (5c)

Next, the R2 term in (5c) was modeled in Canuto and Dubovikov (2006) (Eqs. (7d)–(7h)) with the following
results:
Fb � r�b ¼ �kr
mN 2; kr

m ¼ Cr
m

em

N 2
ð7aÞ
In order to give a physical interpretation of this term, let us consider the case in which the generic tracer coin-
cides with the buoyancy field in which case Eqs. (5b) and (5f) give:
�bt þ ðUþUþÞ � r�bþ oRb

oz
¼ 0; Rb ¼ Fb � r�b ð7bÞ
This is the well-known buoyancy equation (Treguier et al., 1997, Eqs. (6) and (7), where our Rb is called
simply R). While in Canuto and Dubovikov (2006) (Section 4) we presented a detailed discussion of the phys-

ical meaning of Rb, suffices it to say here that it acts like the source of eddy potential energy EPE ¼ ð2N 2Þ�1b02,
whose dynamic equation reads:
D

Dt
EPE ¼ �Rb ð7cÞ
which further shows that Rb must be negative. The closure of Rb presented in (7a) reflects this fact and shows
that the residual mesoscale diffusivity kr

m in (7a) depends on the mesoscale dissipation rate em which, once mul-
tiplied by the efficiency factor Cr

m, represents the total eddy energy production rate. The latter depends on
where the EPE is the largest which occurs near 400 m depth. Thus, while we have chosen to cast the model
results in a form reminiscent of the Osborn-Cox formulae for the vertical diffusivities, the physics here is quite
different since the mesoscale diffusivity kr

m is not a constant in z and neither is constant in geographical loca-
tions since mesoscale activities are different in different parts of the ocean. We further recall that using an eddy
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resolving code, Gille and Davis (1999) computed Rb and found it to be ‘‘too large to be ignored”. The func-
tions Rb, kr

m and Cr
m were plotted in Figs. 4–6 of Canuto and Dubovikov (2006).

3.4. The R1 term in (5c)

Finally, we consider the R1 term in (5c). Since it is the most difficult to model and in order to avoid interrupting
the presentation, we quote only the final result of the derivation presented in Appendix D. The final expression is
Fs � r�b ¼ jMðk� JÞ � rq�s; J ¼ 1

2
f ð�u� udÞoz ln C ð7dÞ
where C(z) � K(z)/Kt is the eddy kinetic energy K(z) normalized to its surface value Kt which is given in Can-
uto and Dubovikov (2006) (Eqs. (6)). The physical interpretation of this term is not easy but it is quite clear
that it depends entirely on �uðzÞ � ud which we have already discussed after Eq. (6h) and which does not exist in
the GM model. This term is clearly related to the additional (dynamical) term that in the eddy induced velocity
we have called w(new) and accounts for the disruptive action of the mean flow on the eddies axisymmetric
coherent structure which moves in a flow of different mean velocity.

3.5. The complete form of R

Putting together the results for R1,2,3, using $q = $H + Loz and rearranging terms, the resulting R flux for
an arbitrary tracer can be presented as the sum of vertical and horizontal terms as follows:
R ¼ �KH � rH�s� Ks
o�s
oz

ð8aÞ
where the corresponding diffusivities are given by
�N 2KH ¼ u0b0 þ jMe� J; Ks ¼ jr
m þ KH � L ð8bÞ
4. Magnitude of the new term

First, we notice that both terms in (8b) are of the same order. In fact, from Eqs. (6b) and (5e) it follows that:
u0b0 � HN 2uþ � HN 2kMLz ð8cÞ

where H � 1 km is the vertical scale. In the definition of J in Eq. (7d), we substitute:
oz ln C � H�1; ud � fr2
dLz ð8dÞ
where the second relation follows from Eqs. (4e) and (4f) of Canuto and Dubovikov (2006). Since NH � frd,

we obtain that J is of the same order of magnitude as u0b0. This means that both terms in (8b) are of the same
order of magnitude. In addition, from (5e) and (8a) it follows that the new term Rz in (5b) is of the same order
of magnitude as the u+ term.
5. Conclusions

The goal of this paper was to derive the dynamic equations for an arbitrary mean tracer to be used in z-
coordinates OGCMs. The correct equation is (2) which contains the additional diapycnal term ozR which
we have now modeled in Eqs. (8a) and (8b) in terms of the resolved fields. The next step is to use of the
new T–S Eq. (2) in a z-coordinate OGCM to assess the implications of the new R term.

Appendix A. Is a diapycnal flux R compatible with the adiabatic approximation?

Consider the velocity ws across a moving surface (Griffies, 2005):
ws ¼ ðU�UsÞ � n ð1aÞ
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where U is the fluid velocity, Us is the velocity of the surface and n is the unit vector normal to the surface. The
flux F(u) of an arbitrary scalar u across this surface is given by
F ðuÞ ¼ wsu ¼ ðU�UsÞ � nu ð1bÞ

where the overbar represents an average over a sub-grid cell and it is meaningful in both isopycnal and z-coor-
dinates formalisms. From (1b) is follows that the flux is the sum of two fluxes:
F ðuÞ ¼ U � nu�Us � nu ¼ F ðuÞ|ffl{zffl}
froz:surf :

þ F ðuÞ|ffl{zffl}
var:surf :

ð1cÞ
The first term represents the flux across frozen isopycnal surfaces while the second represents the flux due to the
variation in time of the isopycnal surfaces themselves. Clearly, the above relations are valid in any system of
coordinates. Next, we apply the above results to isopycnal surfaces which are characterized by the following
variables:
n ¼ kþ b�1
z rHb; Us ¼ �kb�1

z bt ð2aÞ

It follows that:
Us � n ¼ �b�1
z bt; U � n ¼ wþ b�1

z u � rHb ð2bÞ

Next, we choose u ¼ N�2bzb

0 ðN 2 ¼ �bzÞ. Substituting the results in (1c), the two fluxes become:
F bðfroz:surf :Þ ¼ Rþ N�2 U � r 1

2
b02 þ 1

2
U0 � rb02

� �

F bðvar:surf :Þ ¼ N�2ot

1

2
b02

ð2cÞ
where the diapycnal flux R is defined as
R ¼ w0b0 þ N�2rH
�b � u0b0 ð2dÞ
Since in an diabatic regime any flux across isopycnal surfaces must vanish F(u) = 0, using (1c) and (2c) we
obtain:
ot

1

2
b02 þ U � r 1

2
b02 þ 1

2
U0 � rb02

� �
¼ �N 2R ð2eÞ
which is the well-known dynamic equation for the buoyancy variance (Treguier et al., 1997). The terms in
brackets represent advection and diffusion of the buoyancy variance whereas the right hand side represents
its production. McDougall and McIntosh (2001) have argued that the diffusion term is negligible in compar-
ison with advection since the former is a third order term in fluctuating fields and in Dubovikov and Canuto
(2005) it was further shown that the advection terms negligible in comparison with the production. Neglecting
such terms, we obtain from Eq. (2c) and (1c):
F bðfroz:surf :Þ þ F bðvar:surf :Þ ¼ 0; R ¼ F ðfroz:surf :Þ ð2fÞ

The first relation states the well known fact that adiabaticity implies that the total flux across isopycnals is

zero. The second relation tells us that R is not the total buoyancy flux but only the component corresponding
to the frozen isopycnal surfaces. It follows that there is no physical justification to require that R must be zero
even under adiabatic conditions. However, if for numerical reasons one wants to get rid of R, it is possible but
not straightforward or unique to choose a gauge transformation to do so (Eden et al., in press).

Appendix B. Thickness averaged vs. depth-averaged equations

It has been suggested that use of (3) of the text can be justified since it is formally similar to the tracer equa-
tion derived within the thickness-averaged equations of the TRM formalism (temporal residual mean, McDou-
gall and McIntosh (2001) in which the thickness averaging is represented by a hat, Eq. (37)):
otŝþ ðUþUþþÞ � rŝ ¼ DðŝÞ þ Q ð1Þ
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where U++ = (u++,w++) is the TRM eddy-induced velocity. Eq. (1) is Eq. (53) of McDougall and McIntosh
(2001), in which the symmetric part S was written as a diffusion D; note that McDougall and McIntosh (2001)
call U+ what we call U++. The similarity between (1) above and (3) of the text has led to the view that the
solutions of the latter are equivalent to those of (1) above provided one re-interprets �s as ŝ. If that were
the case, there would be no need to model R. However, Eqs. (1) and (3) exhibit important differences that
we analyze in detail: first, we need to recall that in the TRM formalism, U++ = (u++,w++) is related to the
Eulerian eddy induced velocity U+ in Eq. (3) by the following relations obtained from Eqs. (19) and (4b)
of McDougall and McIntosh (2001):
uþþ ¼ uþ þ o

oz
ðN�2W �uzÞ; W ¼ 1

2
N 2q�2

z q02 ¼ 1

2
N 2b02 ð2Þ
where W is the eddy potential energy (as suggested by MMI, in (2) we have neglected a cubic term in pertur-
bation amplitude). The question now is ‘Are Eqs. (3) of the text and (1,2) above the same?’ To answer the
question, we analyze below several aspects of the problem.

(1) Are U++ and U+ in (1) and (3) the same?
Using the geostrophic relation for �uz and the GM model for the eddy induced velocity:
o�u

oz
¼ �f �1N 2k � L; uþ � ozðjMLÞ ð3Þ
where jM � 103 m2 s�1 is the mesoscale diffusivity and L ¼ �N�2rH
�b is the slope of the isopycnals, the ratio

of u+ to the next term in the first relation in (2) turns out to be:
ozðjMLÞ
ozðf �1W k� LÞ � jMfW �1 � Oð1Þ ð4Þ
where for W we have used the results of Böning and Budich (1992, Fig. 6) as well as Fig. 3 of Canuto and
Dubovikov (2006) and where the mesoscale diffusivity scales like (Canuto and Dubovikov, 2005, 2006, Eq.
(4b))
jM � rdK1=2ðzÞ ð5Þ

Here, rd is the Rossby deformation radius and K(z) is the mesoscale kinetic energy. Therefore, the two terms in
u++ are of the same order of magnitude. What is the physical difference between u+ and u++? Because of (3a),
(4) and (5), u+ depends on K whereas u++ depends also on the eddy potential energy W, so that we can write:
uþðKÞ; uþþðK;W Þ ð6Þ

The mesoscale functions K and W have different z-profiles and peak at different depths. Specifically, K(z) has
its maximum at z = 0 (surface) whereas W has its minimum at the surface and its maximum at �500 m, as seen
from Fig. 6 of Böning and Budich (1992), who have noted: while K decreases with increasing depth through
the main thermocline, the maximum values of W occurs at the subsurface.

There is an additional feature that differentiate u++ from u+. Because of (3) above the second term in (2)
depends on f which has different signs in the northern and southern hemisphere whereas u+ does not do so.

(2) U++ and R.
To better understand the physical contribution of U++ and R to the mean tracer equation, we consider (3a)

in the case of buoyancy. The second term in (2) contributes the term:
C ¼ o

oz
ðN�2W �uzÞ � rH

�b ¼ �Wf �1ðk�rHN 2Þ � L ð7aÞ
Next, for an adiabatic ocean, we employ the dynamic equation for the potential energy in which we neglect the
advective terms (Canuto and Dubovikov, 2006, Eq. (14g); Treguier et al., 1997, Eq. (12)):
DtW ¼ �R; R ¼ �t�1
mesW ð7bÞ
where t�1
mes is the growth rate of W. We obtain:
C ¼ ‘�1R; ‘�1 ¼ f �1tmesrHN 2 � k � L � 2 � 103L�1
h � 10�3m�1 ð7cÞ
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where we have used tmes�� a few months, f � 10�4 s�1, N2 � 10�5 s�2, an isopycnal slope of 10�3 and Lh is a
typical horizontal scale. The above derivation shows that from the physical viewpoint, the second term in the
definition of u++ in (2) contributes to (1) a term C that is of the same order as the oR/oz � R‘�1 term in Eq. (2)
of the text.

In summary, the two terms in u++ depend on two scalar functions K and W that represent different physical
properties of mesoscales, have different z-profiles and a model for one of them cannot be expected to work for
the other as well. If a formalism (like the Eulerian one) requires to model two mesoscales variables, eddy kinetic

and potential energies, the same must be true in any other system of coordinates. Since W is a scalar and thus
independent of any system of coordinates, it cannot be transformed away. From the physical viewpoint, since
the eddy potential energy W is the ‘‘recipient” of the energy from the (mean field) baroclinic instabilities, W rep-
resents a key physical variable of the system no matter how one exhibits it. Thus, it is logical to expect that W, or
a physically equivalent of it like R, should appear explicitly in the problem. In that sense, the disappearance of
one of them as in (1) above is purely formal since it would be quite hard to justify depriving the basic equations of
a key feature of mesoscale physics such as W. The practical implication is that a model for u+ cannot be assumed
to be valid for u++ as well. We have explicitly tested this assertion in Canuto and Dubovikov (2006): the
modeling of u+ and W yielded different results (see Eqs. (4) and (7a)) which were checked against numerical
simulations (Böning and Budich, 1992) and heuristic models (Karsten and Marshall, 2002; Olbers and Visbeck,
in press). In conclusion, whether one chooses (U+, R) or U++, there are always two variables to model.

(3) Are the two U in (1) and (2) the same?
To answer the question, we note that in Eqs. (2) U is the solution of the OGCMs depth-averaged mean

momentum equation (Rij represent the Reynolds stresses and we take q0 = 1):
ot�uþU � r�u� f�v ¼ �px �r � Rjx ð8aÞ

while the U entering (1) above is the solution of the thickness-averaged mean momentum equations given by
Eq. (66) of McDougall and McIntosh (2001) which, to make the comparison more transparent, we rewrite as
otð�uþ uþþÞ þ ðUþUþþÞ � rð�uþ uþþÞ � f�v ¼ �px �r � Rjx ð8bÞ

To highlight the comparison with (8a), we rewrite (8b) as follows:
ot�uþU � r�u� f�v ¼ �px �r � Rjx � Rest ð8cÞ

where:
Rest � otuþþ þ ðUþUþþÞ � ruþþ þUþþ � r�u ð8dÞ

which we now study. Since the largest term in (8d) is the z-component of the last term wþþoz�u, we must com-
pare it with other terms in (8c) to assess its relevance. We begin by comparing it with the horizontal compo-
nent of the advection term U � r�u in (8c). Using the first relation in (3a) above, we derive that:
wþþoz�u
�uox�u

� wþþN 2jLj
�u2fL�1

h

� wþþ

�u
HN 2

f �u
� Oð1Þ ð8eÞ
where we have used:
wþþ � uþþH=Lh; ox � L�1
h ; f � 10�4 s�1; N 2 � 10�5 s�2 ð8fÞ

jLj � H=Lh � 10�3; uþþ � 0:1�u; h � 103 m ð8gÞ
Here, H and Lh are the vertical and horizontal scales. It follows that the largest of the Rest terms in (8d) is not
negligible when compared with the other terms in (8c).

Next, we compare wþþoz�u to the vertical component of the advective term in (8c). We have:
wþþoz�u
�woz�u

¼ wþþ

�w
� 0:1f

bLh

� Oð1Þ ð8hÞ
where we used the relations:
�w � f �1bh�u; b ¼ oyf ; �u � �v ð8iÞ
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In deriving the first relation in (8i), we employed the geostrophic relation (3a) above plus the continuity
equation. The two relation (8e) and (8h) show that the Rest terms in (4c) are of the same order (or larger) than
the other terms in (4c) thus making (8c) and (8a) different equations that yield different U’s. Therefore, for a
given �s, the two U in Eqs. (2) of the text and (1) above are not the same function.

(4) Mixed layer.
In the ML neither an isopycnal not the TRM formalism are applicable and one must resort to z-coordi-

nates. From the practical viewpoint, matching a TRM code in the adiabatic region with a z-coordinates code
in the ML may not be easy to do because of the different physical meaning of the variables �s and ŝ whereas use
of z-coordinates greatly facilitates the matching problem.

Appendix C. Model independent results

We follow the standard procedure of decomposing fluxes in diapycnal and isopycnal components. For the
flux Fs, Eq. (5a), we have:
Fs ¼ kN�2Fs � r�b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
diapycnal

þ u0s00 þ kðu0s00 � LÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
isopycnal

ð1Þ
where u0 is the horizontal velocity, L ¼ �N�2rH
�b is the slope of the isopycnals and k is the unit vector in the

z-direction. Applying the operator $� to (1), we obtain ($q = $H + Loz)
r � FsðdiaÞ ¼ o

oz
ðN�2Fs � r�bÞ � oR1

oz
ð2Þ

r � FsðisÞ ¼ N 2rqðN�2u0s00Þ � �Dð�sÞ ð3Þ

Eq. (2) represents the divergence of a diapycnal flux kR1 while (3) represents diffusion. As a first interme-

diate result, the divergence of (1) is given by
r �U0s0 ¼ �Dð�sÞ þ oR1

oz
þr � �szN�2Fb ð4Þ
This result shows that the decomposition (1) has naturally lead to the appearance of the diffusion term that
appears in (2a). Clearly, the last two terms in the rhs of (4) must represent the other mesoscale terms in (2a),
namely the eddy-induced velocity and the R-term. Let us begin with the last term in (4). First, we decompose
Fb in the same way as we have decomposed (1) and then take the divergence. In so doing, we obtain relations
analogous to (2) and (3) which are as follows:
r � �szN�2Fb|fflfflfflffl{zfflfflfflffl}
diapycnal

¼ o

oz
ð�szN�2Fb � rbÞ � oR2

oz
ð5aÞ

r � �szN�2Fb|fflfflfflffl{zfflfflfflffl}
isopycnal

¼ �szN�2Uþ � r�bþ u0b0 � rqð�szN�2Þ ð5bÞ
In deriving (5a), we used the well-known model independent relations (Canuto and Dubovikov, 2005, 2006)
uþ ¼ �ozðN�2u0b0Þ; r �Uþ ¼ 0; r � FbðisÞ ¼ Uþ � r�b ð5cÞ

Inserting (5a) and (5b) into (4) we obtain
r �U0s0 ¼ �Dð�sÞ þ �szN�2Uþ � r�bþ u0b0 � rqð�szN�2Þ þ oðR1 þ R2Þ
oz

ð5dÞ
If we now substitute (5d) into (1) of the main text we obtain
�st þU � r�sþ �szN�2Uþ � r�bþ u0b0 � rqð�szN�2Þ ¼ Dð�sÞ � ozðR1 þ R2Þ þ Q ð6aÞ

This equation is mathematically correct but hard to interpret physically. To make it more transparent, we

add to both sides of (6a) the term �ozR3 where
R3 ¼ N�2u0b0 � rq�s ð6bÞ
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and employ the easy to prove relations
ozR3 ¼ u0b0 � rqð�szN�2Þ � uþ � rq�s ð6cÞ
Uþ � r�s ¼ �szN�2Uþ � r�bþ uþ � rq�s ð6dÞ
The tracer Eq. (6a) simplifies considerably since it acquires the final model independent form
�st þ ðUþUþÞ � r�sþ oR
oz
¼ Dð�sÞ ð7aÞ
where
N 2R ¼ u0b0 � rq�sþ �szF b � r�bþ Fs � r�b ð7bÞ
Fs ¼ U0s00; Fb ¼ U0b0; s00 ¼ s0 � N�2szb

0 ð7cÞ
Appendix D. The R1 term in Eq. (5c)

To the main order in the small parameter h00=�h, we have U0 = U00 and rH
�b ¼ �N 2rq�z, where z is the height

of isopycnal surface. Then, from (4a), we obtain R1 ¼ s00ðw00 � u00 � rq�zÞ. In the adiabatic approximation, we
have w = zt + u � $qz whose fluctuating component is given by w00 ¼ z00t þ u00 � rq�zþ �u � rqz00 þ u00 � rqz00.
Substituting w0 in the previous expression and neglecting the third-order terms in the fluctuating fields, we
obtain R1 ¼ s00ðz00t þ �u � rqz00Þ. If we Fourier transform in both time and space, the expression in parenthesis
becomes ð�ixþ i�u � qÞz0 where q is a 2D wave vector. In Canuto and Dubovikov (2006) and Dubovikov
and Canuto (2005), we showed that for mesoscale eddies x = q � ud, where ud is the eddy drift velocity whose
expression in terms of large scale fields is given in the references just cited. Thus, the Fourier transform can be
written as ið�u� udÞ � qz00 which allows us to write R1 ¼ ð�u� udÞ � s00rqz0. Taking the mesoscale field as quasi-
geostrophic, we have that in isopycnal coordinates $qz0 = fk � obu00. We also notice that the mesoscale fields
u00 and obu00 have the same (or opposite) direction since u00 represents the circular motion of the eddies around
their center. Thus, obu0 ¼ ðu0=u0Þobu0 ¼ 1

2
u0ob ln C ¼ ð2N 2Þ�1

u0oz ln C, where C(z) � K(z)/Ks is the eddy kinetic
energy normalized to the surface eddy kinetic energy Ks; in Canuto and Dubovikov (2006) both K(z) and Ks

were expressed in terms of large scale fields. The final expression for R1 then becomes Eq. (7d).
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